18th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting; June 12-14, 2016

LSCF-CZ Cathodes for Improved SOFC Electrical Performance

Gianfranco DiGiuseppe

Venkatesh Boddapati Hiten Mothikhana Kettering University 1700 University Avenue Flint, Michigan 48504

Conclusions and Acknowledgements

- Synthesized and characterized ceria-zirconia (CZ) mixtures with different molar compositions.
- Prepared LSCF-CZ cathode inks with different weight ratios.
- Quantified the electrical performance of button cells with LSCF-CZ cathodes.
- Determined the long-term voltage stability of LSCF-CZ cathodes.
- It was found that:
 - The doped ceria layer can be avoided provided low-temperature firing of the cathode inks.
 - The cell voltage appears to remain stable over relatively long-term testing.
 - The cell power density is not up to par as of yet.
 - The cathode properties need further refinements to achieve higher power densities.
- This project was supported by the Department of Energy under Award Number DE-FE0026168.
- Many thanks to Project Manager Steven Markovich and the NETL SECA program team.

Presentation outline

- Project objectives
- Background
- Technical approach
- CZ synthesis and characterization
- Cathodes inks and pull test
- Button cell testing
- Cell post-mortem characterization
- Path forward
- Conclusion

- Synthesize and characterize ceria-zirconia (CZ) mixtures with different molar compositions.
- Prepare LSCF-CZ cathode inks with different weight ratios.
- Quantify electrical performance of button cells with LSCF-CZ cathodes.
- Determine long-term voltage stability of LSCF-CZ cathodes.

Background

- Solid Oxide Fuel Cells use cathodes that must have very specific properties.
 - Cathodes need to have high electrical conductivity and excellent catalytic activity for reducing oxygen.
 - For intermediate and low temperature SOFCs, lanthanum strontium cobalt ferrite (LSCF) cathodes are common.
 - A doped ceria barrier layer needs to be used to prevent unwanted chemical reactions at the electrolyte interface.
- There is evidence that a LSCF-CZ mixture does not produce the unwanted SrZrO₃ compounds at the electrolyte interface after sintering at 850°C even without the ceria barrier layer.
 - The indication is that this mixture stabilizes the Sr²⁺ cations in LSCF and suppresses the mobility of strontium, and therefore prevents the reaction between LSCF and YSZ.
 - These studies are limited to one composition, one button cell test, and the mechanism of preventing Sr segregation in not fully explained.

Technical approach

- Synthesize and characterize different molar compositions of CZ powders:
 - ➤ XRD, EDX, HR-TEM, and XPS.
- Prepare cathodes inks made of LSCF and CZ with different weight ratios.
- Screen print inks on commercially available anode supported bilayers.
 - Scotch tape pull test.
- Perform button cell testing including a performance baseline.
 V-time, VJ, and IS.
- Prepare button cell for post-mortem analysis.
 - SEM-EDX, XPS, and HR-TEM.
- Determine mechanisms of SrZrO₃ formation and prevention based upon results from post-mortem analysis.

CZ synthesis and characterization

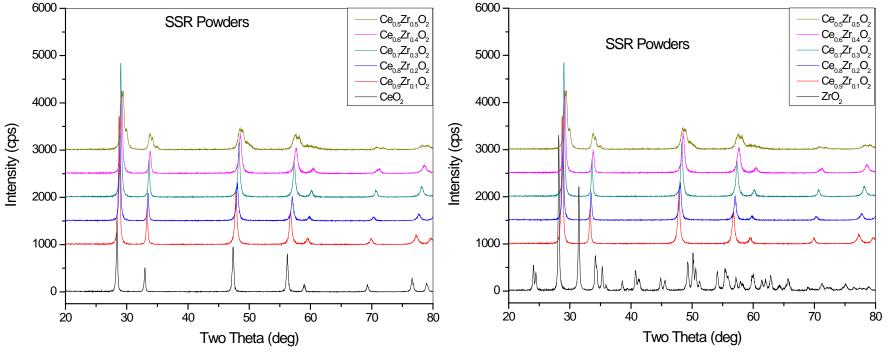
• Synthesized the following molar compositions:

Solid State Reaction (SSR)	Nitrate Synthesis (NIT)
Ce _{0.9} Zr _{0.1} O ₂	$Ce_{0.9}Zr_{0.1}O_{2}$
Ce _{0.8} Zr _{0.2} O ₂	$Ce_{0.8}Zr_{0.2}O_{2}$
Ce _{0.7} Zr _{0.3} O ₂	Ce _{0.7} Zr _{0.3} O ₂
Ce _{0.6} Zr _{0.4} O ₂	$Ce_{0.6}Zr_{0.4}O_{2}$
Ce _{0.5} Zr _{0.5} O ₂	$Ce_{0.5}Zr_{0.5}O_{2}$

• SSR route:

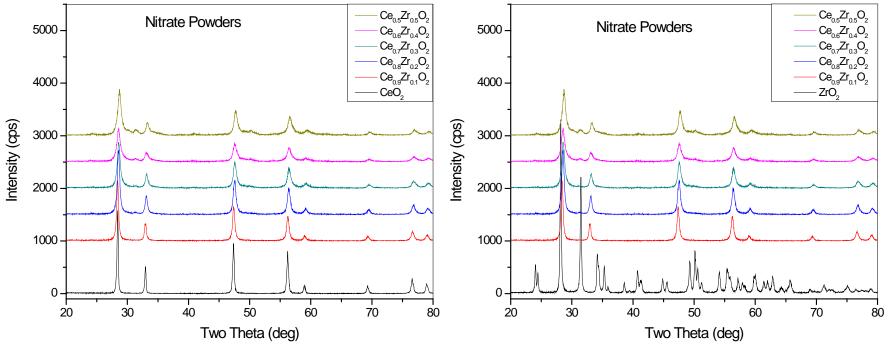
- Zirconium and cerium oxide powders mixed with the appropriate molar ratio, milled for 1 hour in a zirconia vial, fired at 1600°C for 1 hour, and then milled for 1 hour.
- Used for comparison and training purposes.
- NIT route:
 - > Nitrates of Ce(NO₃)₃•6H₂O and ZrO(NO₃)₂•5H₂O were used as precursors.
 - Hydrogen peroxide solution (30 wt%), ammonia water (25 wt%), and de-ionized water used as precipitator.
 - Precipitate formed at around 50°C with stirring during the precipitation for about an hour.
 - Precipitate dried overnight, decomposed at 300°C for 1 hour, and then followed by calcinations at 700°C for 3 hours.
 - Resulting powders were milled for 1 hour.

Supported by:



7

XRD characterization (SSR)


- Incorporation of Zr into the CeO₂ crystal lattice causes a slight peak shift from the pure cubic structures, indicating a change in the lattice parameters.
- This shift occurs at all Zr contents; however, it is more pronounced at higher concentration of Zr and especially on the high 2-theta range.
- The last curve (top) shows that the highest content of Zr (Ce_{0.5}Zr_{0.5}O₂) produces a more drastic change in the cubic structure.
- Right figure seems to indicate that a secondary phase is starting to appear at this Zr concentration which is mostly likely free ZrO₂ that has not incorporated into the ceria cubic lattice.

XRD characterization (NIT)

- The NIT powders do not show a peak shift like the one seen in the SSR.
- However, the data indicate that a secondary phase may be occurring at lower Zr contents.
- In the right figure, the free ZrO₂ is clearly observed with a peak at around 33 degrees, and it is visible at a Zr content of 0.3.

EDX characterization

- EDX results are in line with expectations.
- Zr molar composition off with lower Zr content.

	19	0.	
X.		J.P.	
	٩	•	 9 1 9

			SSRPowder	s							NIT Powde	rs		
Ceo 9Z	r0.1 O 2							Ceo.9Z	r0.1 O 2					
Element	Line	Weight%	Atomic%					Element	Line	Weight%	Atomic%			
0	к	20.05	68.01		A	ctual Form	ula	0	К	20.17	68.15	A	ctual Form	ula
Zr	L	4.88	2.90	(Ce	Zr	0	Zr	L	5.06	3.00	Ce	Zr	0
Ce	L	75.07	29.08	0	.87	0.09	2.04	Ce	L	74.77	28.85	0.87	0.09	2.04
Totals		100.00	99.99					Totals		100.00	100.00			
C	Ceo.sZro.2	O 2						0	eo.sZro.2	D 2				
Element	Line	Weight%	Atomic%					Element	Line	Weight%	Atomic%			
0	к	20.21	67.55		A	ctual Form	ula	0	к	21.38	69.08	A	ctual Form	ula
Zr	L	9.74	5.71	(Ce	Zr	0	Zr	L	9.70	5.50	Ce	Zr	0
Ce	L	70.05	26.74	0	.80	0.17	2.03	Ce	L	68.92	25.43	0.76	0.17	2.07
Totals		100.00	100.00					Totals		100.00	100.01			
0	Ceo.7Zro.3	D 2						0	eo.7Zro.3	D 2				
Element	Line	Weight%	Atomic%					Element	Line	Weight%	Atomic%			1
0	к	20.01	66.60		A	ctual Form	ula	0	к	21.68	68.79	A	ctual Form	ula
Zr	L	14.68	8.57	(Ce	Zr	0	Zr	L	14.64	8.14	Ce	Zr	0
Ce	L	65.31	24.83	0	.74	0.26	2.00	Ce	L	63.68	23.07	0.69	0.24	2.06
Totals		100.00	100.00					Totals		100.00	100.00			
C	Ce0.6Zr0.4	O ₂						0	e0.6Zr0.4	D ₂				
Element	Line	Weight%	Atomic%					Element	Line	Weight%	Atomic%			
0	к	21.70	67.93		A	ctual Form	ula	0	к	24.08	70.85	A	ctual Form	ula
Zr	L	21.31	11.70	(Ce	Zr	0	Zr	L	20.18	10.42	Ce	Zr	0
Ce	L	56.99	20.37	0	.61	0.35	2.04	Ce	L	55.74	18.73	0.56	0.31	2.13
Totals		100.00	100.00					Totals		100.00	100.00			
C	Ce0.5Zr0.5	O ₂						0	e0.5Zr0.50	O ₂				
Element	Line	Weight%	Atomic%			1		Element	Line	Weight%	Atomic%			
0	к	22.41	68.06		A	tual Form	ula	0	к	23.99	69.84	A	ctual Form	ula
Zr	L	27.15	14.46	(Ce	Zr	0	Zr	L	27.41	14.00	Ce	Zr	0
Ce	L	50.44	17.49	0	.52	0.43	2.04	Ce	L	48.61	16.16	0.48	0.42	2.10
Totals		100.00	100.01					Totals		100.01	100.00			

XPS	chara	cteri	zat	ion

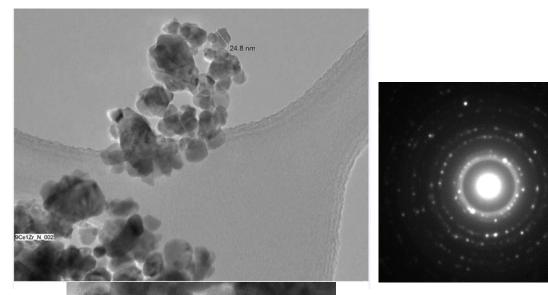
- XPS results are in line with expectations for SSR samples.
- But not for the NIT samples.
- XPS is more surface sensitive while EDX is more of a bulk technique.

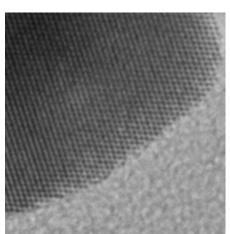
J.S. DEPARTMENT O

Supported by:

Only two samples were analyzed.

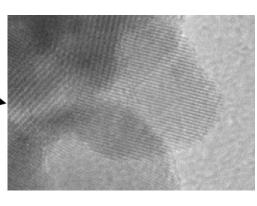
	10×6	Point2	- SURVEY
	0.9		
c/s	0.6 _	Ce3d5	
I	0.3 _	O1s C1s Zr3d	
•	0.0	1200 900 600 300 0 Energy(eV)	


			SSR Pow	lers							NIT Pow	ders			
C	Ce _{0.8} Zr _{0.2} C	\mathbf{D}_2						0	Ce _{0.8} Zr _{0.2} C	O_2					
Element	Line	Weight%	Atomic%					Element	Line	Weight%	Atomic%				
0	K	na	67.82		Ac	tual Form	ula	0	К	na	73.06		Ac	tual Form	ula
Zr	L	na	6.12		Ce	Zr	0	Zr	L	na	3.75		Ce	Zr	0
Ce	L	na	26.06		0.78	0.18	2.03	Ce	L	na	23.19		0.70	0.11	2.19
Totals		0.00	100.00					Totals		0.00	100.00				



HR-TEM characterization of CZ powder

- Bright field image shows the nanosized powder of about 25 nm.
- Electron diffraction confirms cubic structure of CZ mixture.
- Lattice constant estimated to be 5.25 Å (compare to cubic cerium oxide of 5.410 Å).
- Higher magnification images illustrate the lattice.



Supported by:

2/_N_011 Mag: 1780000x @ 7.0 in :13 2/7/2017 scopist: AMT 5 nm HV=200.0kV Direct Mag: 1200000x Kettering University

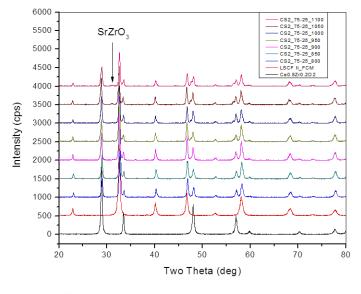
CZ molar composition selection

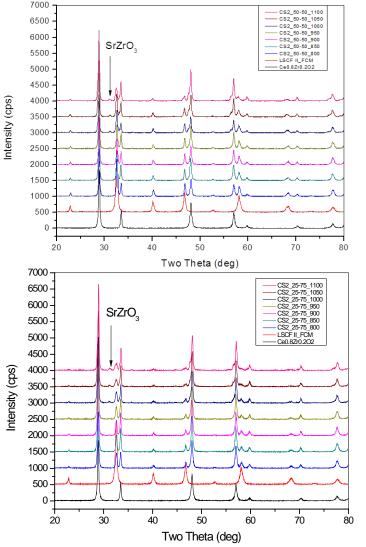
• Given the XRD results, the following two CZ compositions for the initial ink preparation were chosen:

1.
$$Ce_{0.9}Zr_{0.1}O_2$$

2. $Ce_{0.8}Zr_{0.2}O_2$

 Basically, no free zirconia should be present to prevent the formation of SrZrO₃.


Supported by:



14

Compatibility study

- Objective of this study is to determine the temperature and weight ratios at which secondary phases may start to appear.
- Results of this study aid in determining the firing temperature of the LSCF-CZ inks for cell testing.
- Given the XRD results, cathodes should be fired below 900°C and preferably at 850°C.

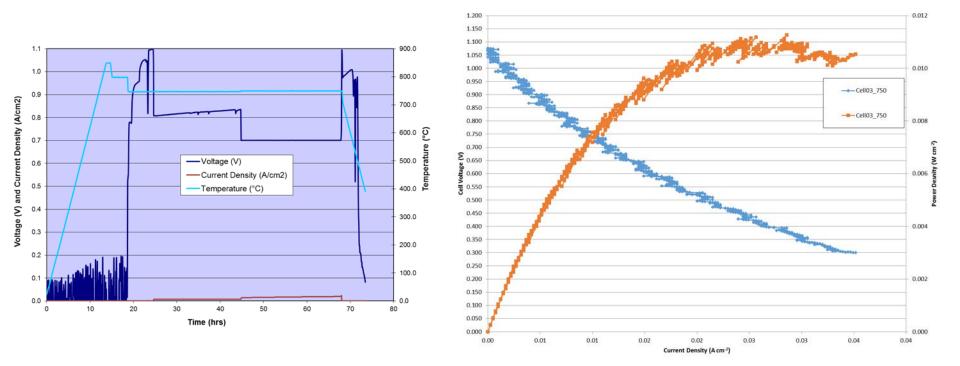
Cathodes inks

- CZ powders added to LSCF in 5, 10, and 15 wt% and mixed with an ink vehicle obtained from fuelcellmaterial.com (FCM).
- Total powder to ink loading is 60:40 as recommended by FCM for their ink vehicle.
- Six different inks were prepared for a minimum of six button cell tests.

	Mass	(g)		Mass ((g)
ID	Ce _{0.9} Zr _{0.1} O ₂	LSCF	ID	Ce _{0.8} Zr _{0.2} O ₂	LSCF
9C1Z+LSCF_5	0.500	9.500	8C2Z+LSCF_5	0.500	9.500
9C1Z+LSCF_10	1.000	9.000	8C2Z+LSCF_10	1.000	9.000
9C1Z+LSCF_15	1.500	8.500	8C2Z+LSCF_15	1.500	8.500

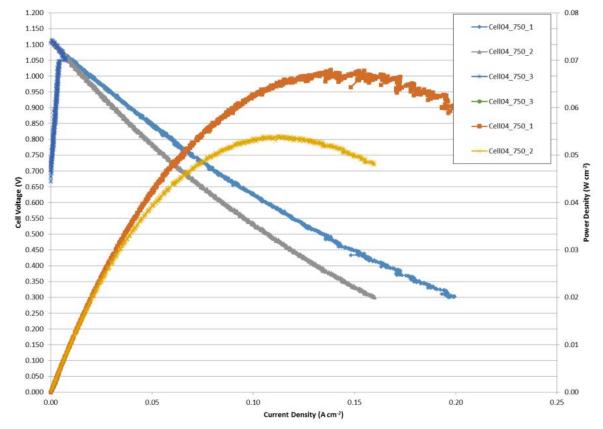
Pull test

- Used LSCF paste from FCM; no CZ was used.
- Anode bilayer were also purchased from FCM.
- Pull test (scotch tape) results are shown below.
- Data show that "adhesion strength" is best when fired at 950°C or higher.


Sample ID	Firing Temp (°C)	Firing Time (hrs)	Scotch Tape Test	Residue on Tape
PT1	850	2	Pass	Heavy
PT2	900	2	Fail	Heavy
PT3	950	2	Pass	No
PT4	1000	2	Pass	No
PT5	1050	2	Pass	No
PT6	1100	2	Pass	No
PT7	850	4	Pass	Light
PT8	850	6	Pass	Light

Cell 03

- Delphi bilayer and LSCF paste from FCM.
- Cathode fired at **1100°C for 1 hour**.
- Virtually zero power is obtained due to SrZrO₃ formation at the electrolyte interface.
- Voltage stable; a possible indication that SrZrO₃ formation is complete.



Cell 04

- Delphi bilayer and LSCF paste from FCM.
- Cathode fired at **950°C for 2 hour**.
- A little better than Cell 03 but power decays to nothing.
- Indication is that SrZrO₃ formation still ongoing.

2.8 3.0 3.2 3.4 3.6

0.8

0.80

0.75

0.70

0.65

0.60

0.5

0.50

0.45

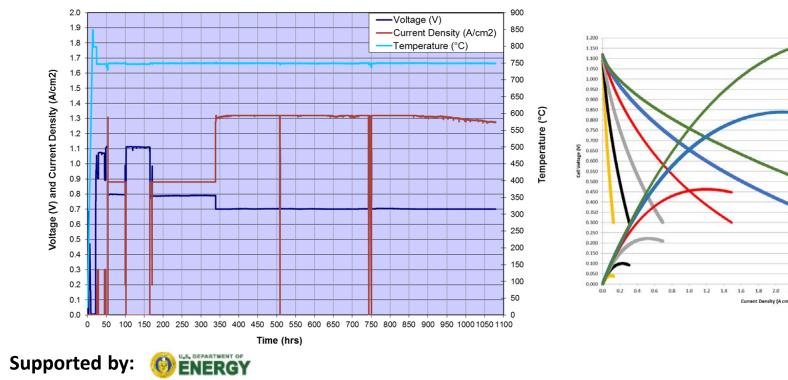
0.40

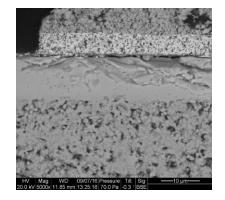
0.35

0.30

0.25

0.20


0.15


0.10

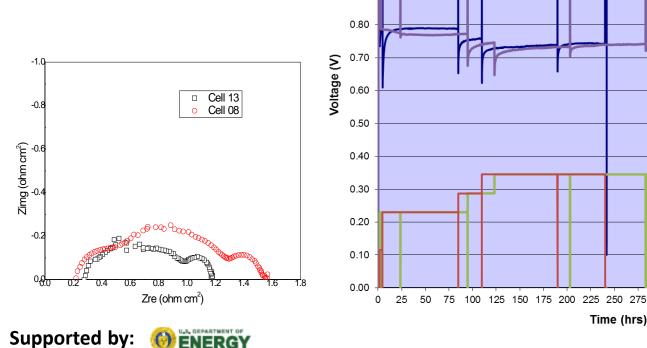
0.05

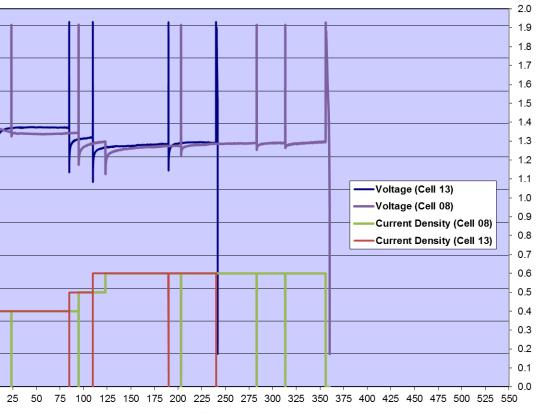
Button cell testing (baseline)

- Cell 02 Delphi baseline long-term test (Ni-YSZ/YSZ/SDC/LSCF).
- LSCF fired around 1100°C.
- Stable performance over 1000 hours.
- Current density decrease after 850 hours likely due to Arbin damage; no change in voltage when current density decreases.
- Cell performance at 750°C is quite good; irrelevant as the temperature reaches 500°C.

Cell testing w/o barrier layer or CZ

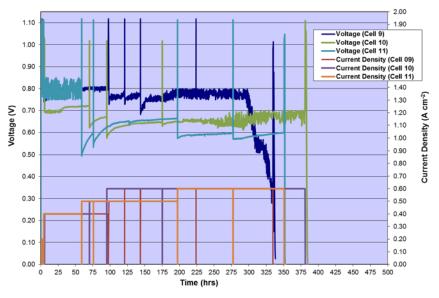
1.10

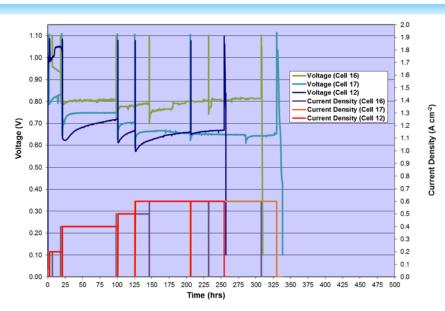

1.00


0.90

ID	Components	Comments
Cell 08	Ni-YSZ/YSZ/LSCF (FCM ink)	LSCF fired at 850°C/2hrs
Cell 13	Ni-YSZ/YSZ/nano-LSCF (homemade)	LSCF fired at 850°C/2hrs

- No SDC barrier layer used.
- No CZ used in LSCF.
- Fired cathode current collector in situ.
- Stable performance but cathode polarization is too large.
- Need to improve power density.



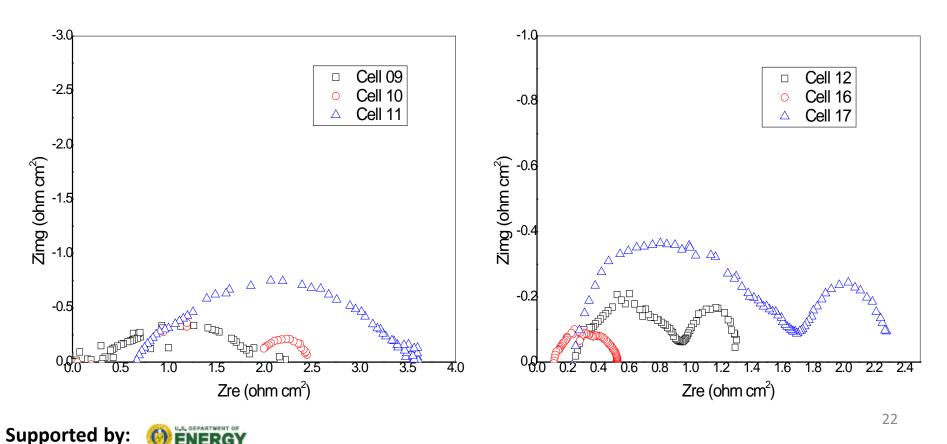

Current Density (A cm⁻²)

20

Button cell testing (LSCF-CZ)

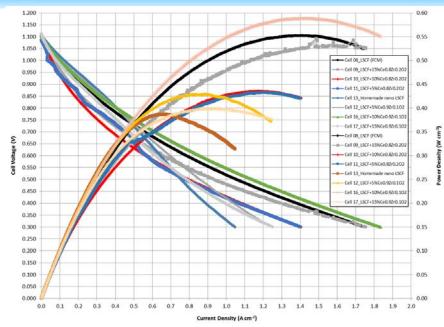
- No SDC barrier layer used; LSCF-CZ fired at 850°C/2hrs.
- Fired cathode current collector in situ.
- Stable performance in most cases.
- Higher CZ content, higher voltage.
- Relatively higher performance for $Ce_{0.9}Zr_{0.1}O_2$.
- Higher performance than pure LSCF when using 15% CZ.
- Nonetheless, need to improve power density.
- Need to optimize cathode properties such as porosity, adhesion strength, etc.

עו ו	Components
Cell 09	Ni-YSZ/YSZ/LSCF+15%Ce _{0.8} Zr _{0.2} O ₂
Cell 10	Ni-YSZ/YSZ/LSCF+10%Ce _{0.8} Zr _{0.2} O ₂
Cell 11	Ni-YSZ/YSZ/LSCF+5%Ce _{0.8} Zr _{0.2} O ₂
Cell 12	Ni-YSZ/YSZ/LSCF+5%Ce _{0.9} Zr _{0.1} O ₂
Cell 16	Ni-YSZ/YSZ/LSCF+10%Ce _{0.9} Zr _{0.1} O ₂
Cell 17	Ni-YSZ/YSZ/LSCF+15%Ce _{0.9} Zr _{0.1} O ₂


Supported by:

21

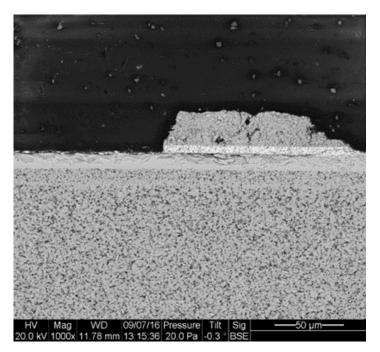
Impedance spectroscopy (LSCF-CZ)

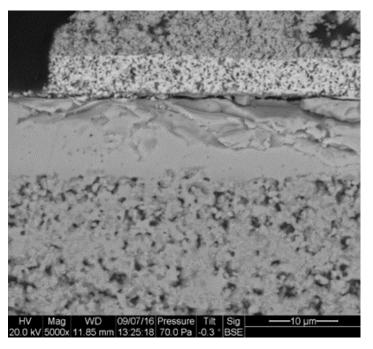

- Cathode polarization is too high!
- Need to optimize cathode properties such as porosity, adhesion strength, etc.

Voltage vs power density (LSCF-CZ)

- Max power density below par when compared to Delphi technology.
- Need to improve reproducibility of cell testing assembly.

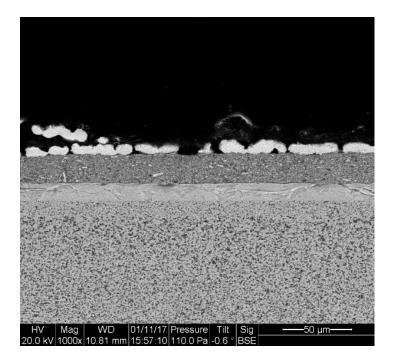
ID	Components	P_{max} (W/cm ²)	Tested on	Comments
Cell 02	Ni-YSZ/YSZ/Doped Ce/LSCF	1.19	Q1	Delphi Cell
Cell 08	Ni-YSZ/YSZ/LSCF (FCM ink)	0.55	Q2	Baseline 1
Cell 09	Ni-YSZ/YSZ/LSCF+15%Ce _{0.8} Zr _{0.2} O ₂	0.53	Q3	
Cell 10	Ni-YSZ/YSZ/LSCF+10%Ce _{0.8} Zr _{0.2} O ₂	0.44	Q3	
Cell 11	Ni-YSZ/YSZ/LSCF+5%Ce _{0.8} Zr _{0.2} O ₂	0.45	Q3	
Cell 12	Ni-YSZ/YSZ/LSCF+5%Ce _{0.9} Zr _{0.1} O ₂	0.35	Q3	
Cell 13	Ni-YSZ/YSZ/nano-LSCF (homemade)	>0.45*	Q3	Baseline 2
Cell 16	Ni-YSZ/YSZ/LSCF+10%Ce _{0.9} Zr _{0.1} O ₂	0.59	Q4	
Cell 17	Ni-YSZ/YSZ/LSCF+15%Ce _{0.9} Zr _{0.1} O ₂	0.40	Q4	

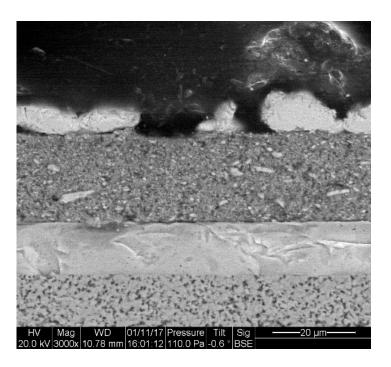

*Power booster failure; data taken from voltage-time curve.



Cell post-mortem characterization (SEM)

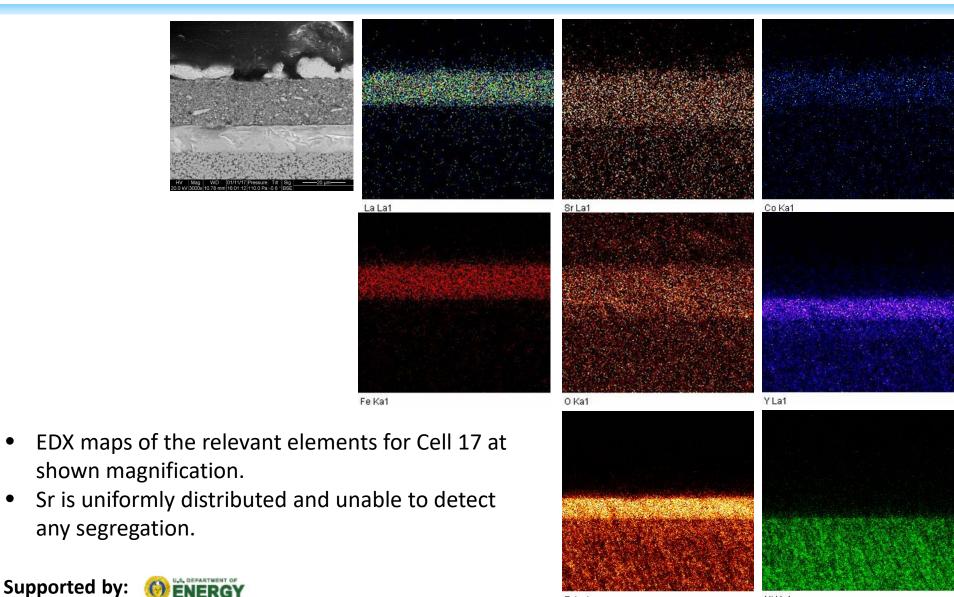
- Cross sections of a typical Delphi tested cell:
 - Electrolyte layer about 10 μm.
 - Ceria layer about 4-5 μm.
 - Cathode **porous** layer about 30 μm.
 - Damage occurred during current collector removal and sample preparation.



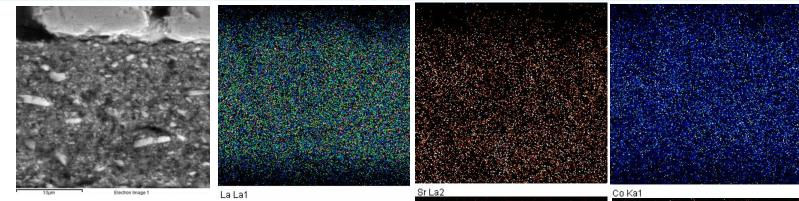


Cell post-mortem characterization (SEM)

- Cross sections of tested Cell 17:
 - \succ Electrolyte layer about 10 μ m.
 - > No ceria layer!
 - Cathode non-porous layer about 30 μm.
 - CZ irregular shape particles clearly visible.

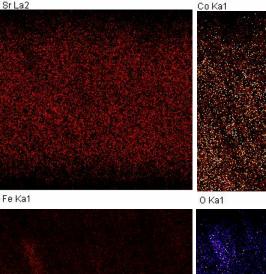


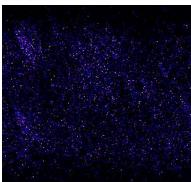
Cell post-mortem characterization (EDX)



Zr La1

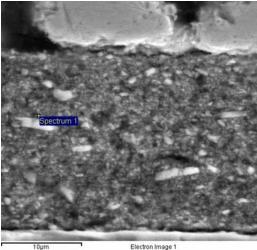
Ni Ka1


Cell post-mortem characterization (EDX)

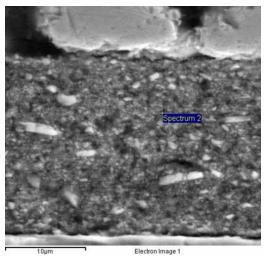


- EDX maps of the relevant elements for Cell 17 at higher magnification.
- Again unable to detect any Sr segregation.

Supported by:


Zr La1

Ce La1


Cell post-mortem characterization (EDX)

- Spot EDX analysis for Cell 17. \bullet
- Sr numbers are within the EDX experimental error which should be around 1%.

Element	Weight%	Atomic%
OK	17.87	55.62
Fe K	15.86	14.14
Co K	4.54	3.83
Ni K	1.73	1.46
Sr L	10.63	<mark>6.04</mark>
Zr L	6.58	3.59
La L	30.22	10.83
Ce L	12.58	4.47
Totals	100.00	

Element	Weight%	Atomic%
OK	17.45	54.62
Fe K	18.02	16.16
Co K	4.61	3.92
Ni K	1.41	1.20
Sr L	11.50	<mark>6.57</mark>
Zr L	3.25	1.79
La L	33.67	12.14
Ce L	10.09	3.60
Totals	100.00	

Path forward

- Significant results:
 - \succ LSCF-CZ can be used to remove the ceria barrier layer .
 - Low temperature firing of the cathode prevents the formation of SrZrO₃.
 - The formation of SrZrO₃ is a strong function of temperature.
 - ➤ Stable cell voltage over long time.
- Path forward:
 - Improve cathode adhesion to the YSZ layer (nanopowders, sintering aids, etc.).
 - Improve cell power density by lowering cathode polarization.
 - ➤ Test larger scale cells.

Conclusions and Acknowledgements

- Synthesized and characterized ceria-zirconia (CZ) mixtures with different molar compositions.
- Prepared LSCF-CZ cathode inks with different weight ratios.
- Quantified the electrical performance of button cells with LSCF-CZ cathodes.
- Determined the long-term voltage stability of LSCF-CZ cathodes.
- It was found that:
 - The doped ceria layer can be avoided provided low-temperature firing of the cathode inks.
 - The cell voltage appears to remain stable over relatively long-term testing.
 - The cell power density is not up to par as of yet.
 - The cathode properties need further refinements to achieve higher power densities.
- This project was supported by the Department of Energy under Award Number DE-FE0026168.
- Many thanks to Project Manager Steven Markovich and the NETL SECA program team.

Thank you for your time.

Questions?

